Back To The Course

Programming In Python

  • a. Basic Coding
  • b. Lists
  • c. Strings
  • d. Other Data Structures

Database Design and Introduction To MySQL

  • a. Database Design
  • b. Database Creation in the MySQL Workbench
  • c. Querying in MySQL
  • d. Joins and Set Operations
  • e. SQL Practice Case Study

Python For Data Science

  • a. NumPy
  • b. Pandas

Data Visualization In Python

  • a. Introduction To Data Visualization With Matplotlib
  • b. Immersion Pack
  • c. Data Visualization: Case Study
  • d. Data Visualization with Seaborn

Exploratory Data Analysis

  • a. Data Sourcing
  • b. Data Cleaning
  • c. Univariate Analysis
  • d. Bivariate and Multivariate Analysis

Inferential Statistics

  • a. Introduction To Probability
  • b. Basics of Probability
  • c. Discrete Probability Distributions
  • d. Continuous Probability Distributions
  • e. Central Limit Theorem
  • f. Applications of Sampling Methods

Hypothesis Testing

  • a. Concepts of Hypothesis Testing – 1
  • b. Concepts of Hypothesis Testing – 2
  • c. Industry Demonstration 1
  • d. Industry Demonstration 2
  • e. Statistics – Interview Practice

Advanced SQL and Best Practices

  • a. Window Functions
  • b. Case Statements, Stored Routines and Cursors
  • c. Query Optimization and Best Practices
  • d. Problem-Solving Using SQL
Please register for Data Analytics to view this lesson.